

Near Earth Asteroid (NEA) Scout CubeSat Mission

Anne Marinan¹, Julie Castillo-Rogez¹, Les Johnson², Jared Dervan², Calina Seybold¹, Erin Betts²

¹Jet Propulsion Laboratory, California Institute of Technology, United States ²NASA George C. Marshall Space Flight Center, United States

NEA Scout Mission Overview

- Mission Objectives:
 - Characterize one candidate NEA with an imager to address key Strategic Knowledge Gaps (SKGs)
 - · Global and regional morphology
 - Rotational properties
 - Local debris environment
 - Regolith properties
- One of "Lucky 13" CubeSats launching on Space Launch System EM-1 (~2019)
 - Demonstrating deep space navigation with 86-m² solar sail
 - 6U CubeSat
 - 2.5 year design mission life
- Collaborative Mission
 - MSFC provides solar sail,
 ACS/GNC, and mission operations;
 implements spacecraft I&T
 - JPL provides avionics, mission design and navigation, and instrument (camera)
 - Support from GSFC, JSC, LaRC

"U" ~10 cm cube

Target
Reconnaissance with
medium field imaging
Shape, spin, and local
environment

Close Proximity Imaging

Local scale morphology, terrain properties, landing site survey

NEA Scout Science Overview

Concept of Operations

NEAS Deployment Configurations

NEAS Flight System Overview

Combination of COTS and In-House Development

Tests and Development Activities

Sail and AMT Environmental Testing

- Uncover and address technical and process challenges early-on
- Sail deployment tests (half-scale and fullscale)
- AMT benchtop functional tests
- Vibration test
- Depressurization test

Full-scale Assembly (non-Flight)

Vibration Test Fixture

Ascent Vent Test

Sail EDU Deployment Testing

Camera Assembly and Testing

- Flight Camera has seen first light!
- Electronics boards assembled and tested
- Mechanical housing assembled
- Environmental testing
 - Bakeout
 - Vibration

Inner electronics stack

Mechanical housing

3-D Mockup Activity

Component fit/tolerance check

- Practiced wire routing (risk reduction)
- Informed procedures for assembly, integration, harnessing

Integrated 3-D Print

Checking out AMT translation

Software Development and EDU Testing

- 'FlatSat' software development and limited functional testing
 - Assemble hardware as available
- Development units and engineering models currently inhand
 - Will be arriving into Fall 2017
- Development will continue through system I&T
 - Software development in parallel with hardware integration

Summary and Project Status

Summary

- NEAS is demonstrating new, enabling technology and addressing strategic knowledge gaps in a 6U CubeSat form factor
 - Solar sail
 - Momentum management Active Mass Translator
 - Deep-space transponder (Iris), rad-hard electronics (Sphinx)
- Collaboration between several NASA centers
 - COTS and in-house procurements
- Pushing the boundaries of CubeSat capabilities
 - 2.5-year interplanetary mission
- Extensive design, analysis, and testing has been performed to-date to address technical challenges
- High-Level Forward Schedule
 - Flight System integration starts Fall 2017
 - Delivery (to storage) in Spring 2018
 - Manifested on SLS EM-1 for ~2019 deep space flight opportunity
 - NEA flyby anticipated in ~2022

Backup

Brief History of Solar Sailing

Flight System Overview

Mission Concept	Characterize a Near Earth Asteroid with an optical instrument during a close, slow fly-by
Payload	Upgraded OCO-3 Context Camera
Mechanical & Structures	 "6U" CubeSat form factor <14 kg total launch mass Modular flight system concept
Propulsion	 ~80 m² aluminized Kapton solar sail (based on NanoSail-D2)
Avionics	Radiation tolerant LEON3-F7 architecture
Electrical Power System	 Deployable solar arrays with XTJ GaAs cells (~56 W EOL at 1 AU solar distance) 6.2 Ahr battery (3S2P 18650 Lithium Cells) 9 – 12.5 V unregulated, 5 V regulated
Telecom	 JPL Iris 2.1 X-band transponder, supports Doppler, ranging, and D-DOR 2 pairs of INSPIRE-heritage LGAs (Rx/Tx) Microstrip array MGA (Tx): ~1 kpbs to 34-m DSN at 0.75 AU
Attitude Control System	 Nano star tracker, coarse sun sensors, and MEMS IMU for attitude determination 15 mNm-s (x4) reaction wheels Active mass translation system R-236fa (refrigerant gas) RCS system

